Operating Life Calculation for Linear Guides

Operating Life
When Linear Guide is loaded in linear recirocating motion, scaly damages
called flaking appear due to material fatioue as the stress works on the roling Caled fiaking appear due to materiaf fatigue as the stress works on the roiing
elements and roling ocontact surfacs constantly Total travel distance until the
first tilaking occurrs is called Life of Linear Guited.

Rated Life
Rated life is the total travel distance that 90% of linear guides of the same
type can reach, under the same conditions, with no occurrence of flaking type can reach, under the same conditions, with no occurrence of flaking
damage. Rated lít can be obtained from the Basic Dynamic Load Rating and
the actual load applied on the linear bushings, as shown below.

$$
L=\left(\frac{C}{P}\right)^{3} \cdot 50
$$

Operating Life Calculation Software MiISUMII provides an operatinn life calculation software for Linear Guides. The
Ife is easily calculated hy ust entering usage conditions such as load speed Ife is easily calculated by just entering usage conditions such as load, spee
etc. software can be found at: http://downioad.misumi.jp/mol/fa_soft.htm|

Load must be calculutaded before actually using Linear Guides. To obtain load during linear reciprocating motion, it is necessary to fully consider vibration
and impact during motion, and also distribution status in relation to Linear Guides. So, it is not eass to, obtain load by calcolalition Oppretating temperature also critically affects life. An lthes
calculation formula is as follows.
$L=\left(\frac{f H \cdot f T \cdot f c}{f w} \cdot \frac{C}{P}\right)^{3} \cdot 50$

- Hardness Factor (fH)

For Lindear Guide aapporications, sufficient hardness is required for ball contact
shafts. Insufficient hardness causes less allowable load, resulting in shorter life.
Please correct the rated life according to the hardness factors.

- Temperature Factor (fT)
If the inear Guide temperatre exceeds $100^{\circ} \mathrm{C}$, the Linear Gide and shaft
hardness decreases, resultung in less allowable load and shorter life than Used at a room temperature.
Pease correct the rated life according to the temperature factors.
*Please use Linear Guides under the allowable temperature shown on Please use Line
product page.

Fig. 2. Temperature Factor

Linear Guides perform linear reciiprocating motion while supporting object weight. Therefore, load applied to Linear Guides varies depending on the center of gravity of the
object, thrust force applied position or changes in speed at start, stop, acceleration and deceleration. For Linear Guide selections, these conditions must be fully considered. Table-3. Condition of Use and Load Calculation Formula

:Applied Load (N) P1, P2, P3, P4: Load applied to Linear Guides (N)

Abstract

-1

x, Y : Linear Guide Span (mm) V: Travel Speed (mm/sec) tt:Acceleration Time (sec) ts: Deceleration Time (sec)
In general, load applied to Linear Guides varies depending on their applications. For example, there are cases at the start and stop of reciprocating motion, during
constant motion or transfer with//without a workpiece. Therefore, it requires average load under which the life equals to the one under these fluctuating loads.

3When load changes in a sine curve as shown on Fig. 5 ana and (b) Fig. 5 (a) P P $=0.0 .65 \mathrm{FP}$ m

Jt

Fig. 4 Constant Fluctuating Loads
Fig. 5 Sine Curve Formed Fluctuating Loads

Condition of Use	tw
No shocks vibations, low speed: 15m/min. or less	1.0~1.5
	1.5-2 20
Witits shodss vivarions, high speed: Sommmi. or more	2.0-3.5

- Contact Factor (fc)
For a cutual appoictiotios more than 2 blocks are generally used per shaft. In
this case load applied to each block varies depending on machining precision but is not uniformly distributed. As a result, per-block allowable load varies Please correct the rated life according to Table-1 Contact Factor.

- Load Factor (fw)

To calculate load applied to the Linear Guides, in addition to object weight, it
requires inertia force attributed to motion velocity or moment loads. Further, is necessary to accurately determine the temporal change of each. It, however is difficicult to attain accurate calculations due to potential vibration and impacts caused during recirocoting motion, other than repeateded start-stop motions.
Table-2 Load Factor helips simplify operating Ifte calculiton

- Applied Load P Calculation Method

